Coarse Detection and Fine Color Description for Region-Based Image Queries

Julien FAUQUEUR \& Nozha BOUJEMAA - ICPR'2002

http://www-rocq.inria.fr/~fauqueur/ADCS/

Main Problems of Image Retrieval by Regions in generic image database:

How to automatically detect regions in an image?

How to describe and compare their appearence?

- regions must correspond to areas of interest for the user
- regions must be visually characteristic
- regions are more homogeneous than images:
$\rightarrow$ a finer description must be found with a suitable similarity measure


## Our approach: Coarse Detection and Fine Description

## COARSE REGION DETECTION BY CLASSIFICATION OF LDQC's

The region extraction is based on the classification of the Local Distributions of Quantized Colors (LDQC's) with CA (see 1). The LDQC primitive naturally integrates the diversity of colors in large pixel neighbourhoods.
Besides global spatial information is integrated in segmentation process with the use of the Region Adjacency Graph (RAG).
Segmentation workflow:


Original image


1. Image color quantization using CA (see 1)

2. Computation of LDQC's

3. LDQC's classification using CA (see 1)


4. Image of detected regions

Final segmented image provides a few regions per image which have a discriminent visual "homogeneous diversity" for the user.

## REGION DESCRIPTION - ADCS, A FINE COLOR VARIABILITY REGION DESCRIPTOR

## Description

Classic color histograms represent only 200 colors (on average) among the millions of a full color space. Regions contain less colors than entire images and require a finer color resolution to be distinguished from one another in the database.

We propose to describe regions' color variability by their Adaptive Distribution of Color Shades (ADCS): The color shades are the relevant colors present in each region determined at a high resolution. ADCS is more accurate and more compact than classic color histograms.


## Retrieval

When matching regions, 2 given ADCS descriptors are compared using the color quadratic distance (see 2). example of 2 ADCS to compare with the color quadratic distance:

## RESULTS ON TEST DATABASE



1: Competitive Agglomeration (CA) classification algorithm:
CA-classification minimizes the following functional J:
$J=\sum_{i=1}^{C} \sum_{j=1}^{N} u_{i j}^{2} d^{2}\left(x_{j}, \beta_{i}\right)-\alpha \sum_{i=1}^{C}\left[\sum_{j=1}^{N} u_{i j}\right]^{2}$
with constraint $\sum_{i=1}^{C} u_{i j}=1, \forall j \in\{1, \ldots, N\}$
output: $C$ and $\left\{\beta_{i}, \forall i \in\{1, \ldots, C\}\right\}$
See: H. Frigui \& R. Krishnapuram,
determines automatically the optimal number of classes for a given classification granularity.

