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ABSTRACT

We present a new approach based on Discriminant Anal-
ysis to map a high dimensional image feature space onto
a subspace which has the following advantages: 1. each
dimension corresponds to a semantic likelihood, 2. an effi-
cient and simple multiclass classifier is proposed and 3. it is
low dimensional. This mapping is learnt from a given set of
labeled images with a class groundtruth. In the new space
a classifier is naturally derived which performs as well as
a linear SVM. We will show that projecting images in this
new space provides a database browsing tool which is mean-
ingful to the user. Results are presented on a remote sensing
database with eight classes, made available online. The out-
put semantic space is a low dimensional feature space which
opens perspectives for other recognition tasks.

1. INTRODUCTION

Recognising objects and textures based on their visual ap-
pearance is a challenging task because the correspondence
between the visual features of an image and its associated
meaning is often ambiguous.

In the context of remote sensing imagery huge amounts
of data are produced for various purposes including mo-
saicing, terrain classification, or the detection of changes,
anomalies and manmade structures. We focus on the prob-
lem of recognition of various types of manmade entities as
well as different types of vegetation. This problem presents
various challenges due to the high heterogeneity both within
and across classes. The within class heterogeneity is due
to the difference of acquisition process, orientation, and in-
trinsic appearance. On the other hand some classes, as we
will see, can be very similar (such as grass and fields) while
some others are of different nature: the vegetation classes
tend to relate to textures while the manmade ones relate to
objects. In this context, choosing an adequate set of features
to discriminate between these classes is difficult. Indeed our
intuition would suggest that different types of features may
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be useful in different cases: for example, structure or color
features to discriminate manmade versus vegetation, color
for grass versus river, texture for grass versus trees. This
relates to the feature selection problem. Based on discrimi-
nant analysis, the presented method handles the problem of
finding the optimal weighting of the feature components to
discriminate each class against the others.

Let us consider a set of images manually assigned to
C classes of interest. We introduce a mapping, referred to
as Semantic Discriminant Mapping (SDM), from the im-
age feature space into a C'-dimensional subspace referred to
as the semantic space. In the semantic space, each of the
C dimensions discriminates between a given class and the
others. Along each dimension a one-class predictor for the
corresponding class will be built and the combination of the
predictors will result in a multi-class classifier. The com-
ponent values on those semantic dimensions give a classifi-
cation score and can be used to display an image database
content with the semantic directions of interest.

In section 2 we give an overview of all the image fea-
tures used. The SDM is presented in section 3. In section 4
we will introduce the multiclass classifier which operates in
the semantic space. Results are presented in section 5, and
conclusions in section 6.

2. COLOR, TEXTURE AND STRUCTURE
FEATURES

Since the nature of the images we want to classify is very
heterogeneous, various types of features must be integrated
to achieve a good recognition rate. We therefore build a
big feature vector to characterise the image content which
consists of the concatenation of different color and texture
features. Since our method can use any type of feature vec-
tor, we give only an overview of the features involved. Our
texture and structure descriptors are based on the Dual Tree
Complex Wavelet Transform (DTCWT) [1] computed on
four levels. They involve central moments, histograms and
a new feature, the Inter-Level Product (ILP) described in
[2]. The entire feature vector description is comprised as
follows with each subfeature dimension:



e color: mean HSV value (3), mean RGB value (3),
RGB-pixel variance (3), 6 x 6 x 6 uniformly quan-
tised RGB color histogram (216), entropy of the RGB
histogram (1)

o texture: DTCWT magnitude mean, variance, skew,
kurtosis, and directional statistics (36 for all 4 levels)

e structure: 4-bin ILP magnitude histogram (16 for all
4 levels), mean, variance, skew and kurtosis of the 4-
bin ILP magnitude histogram (16 for all 4 levels), 4-
bin ILP histogram of generic structures (edges, ridges,
...) (16 for all 4 levels)

The total dimension of the feature vector is p = 310.
This original feature space is denoted as . Each dimension
is normalised so that the mean over the data set is zero and
the standard deviation is one.

3. SEMANTIC DISCRIMINANT MAPPING

The feature space JF contains various subfeatures which we
thought relevant for our remote sensing recognition prob-
lem. In this context, Discriminant Analysis [3] is a sim-
ple and powerful technique to project data into a reduced
dimensional space in which the data are optimally sepa-
rated given a set of labeled images. The implicit effect of
the transformation is to assign various weights to each fea-
ture dimension depending on their relevance to discriminate
each class.

However a matrix singularity problem can arise in the
discriminant projection if the number of samples is lower
than the feature dimension and/or if some feature dimen-
sions have near-zero variance (typically histogram bins). To
circumvent this drawback Swets and Weng [4] proposed
projection of the data with Principal Component Analysis
(PCA) before discriminant projection. Although our dis-
criminant projection differs from theirs we use their idea
of performing a prior PCA projection into an intermediate
space, denoted as Fpca. In this section we give a brief
overview of PCA and Fisher Discriminant Analysis (FDA)
transformations and then present our C-FDA transformation
to perform multiclass discriminant analysis. The SDM is in-
troduced as combination of PCA and C-FDA transforms.

3.1. PCA and FDA transformations

Given a set of p-dimensional feature vectors {z;} in F,
Principal Component Analysis finds a subspace Fpca of
dimension p’ < p whose basis vectors correspond to the
maximum variance directions of X = [z...zp]. If we call
Mp the p x p’ matrix of the linear transformation from F to
Fpca, then the projection of x into this new space is M bz
The columns of transformation matrix Mp = [e;...e,] con-
sist of the eigenvectors e; obtained from the eigenvalue de-
composition \;e; = (X X*%)e;, where X X is the covari-

ance matrix and \; the eigenvalue associated with the eigen-
vector e;. The \; are sorted in decreasing order such that e
corresponds the direction of maximum variance of X and
e, to the one of minimum variance. We choose to keep the
first p’ dimensions such that Zf/zl Ai > 0.9999 Zle A
We denote the PCA transformation as Mp : F +— Fpca.-

Unlike PCA, which finds the directions that capture most
of the feature variance, FDA finds the direction w that best
separate the features [3]. In the two class case, we assume
the features = belong either to the class C or C’. An optimal
vector w must maximise the following criterion J:
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where | . | denotes the matrix determinant, S the between-
class scatter matrix and Sy, the within-class scatter matrix
defined as follows:
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where m = Me%n[:c] and m’ = Megn[x] are the respective
x€ zel’

means of features in classes C and C’. A solution of this
maximisation problem is given by:

w = Syt (m—m') “)

In this case, FDA builds a mapping from the feature space
to a 1-dimensional subspace.

3.2. The C-FDA transformation

We introduce a new transformation, called C-FDA, to per-
form discriminant analysis in the multiclass case and which,
unlike Multiple Discriminant Analysis (MDA)[3]', deter-
mines a new feature space in which each dimension corre-
sponds to a class membership likelihood. C-FDA consists in
performing an FDA C' times to discriminate between each
class Cy and the other classes. For each class Cy, C des-
ignates Cq and C’ designates Uy 4C; with section 3.1 no-
tations. Thus for each class C4y we get from formula (4) a
vector wy defining the direction of optimal separation be-
tween C,4 and the other classes. In our approach, since the
features are first transformed with PCA, C-FDA is applied
in Fpc 4 of dimension p’. So the C-FDA transformation is
defined by the p’ x C matrix My = [w;...w¢]. The output
space S is C'-dimensional and called the semantic space.
The transformation of a vector y in Fpc 4 is then written
MbyinS.

! Although MDA deals with multiclass, it is not suitable for our problem
since the dimensions in the transformed space are not directly associated
with a class. MDA finds a linear transformation from F to a C' — 1 dimen-
sional subspace which optimally separates the data globally.



For classification and browsing purposes we find it conve-
nient to normalise the transformed values in S such that :

Mean[w’y] = +1 and Mean[why] = —1 5
yecd[ Y ygcd[ Y] 5)

This is achieved by applying a linear transformation, de-
noted as T, from S to itself which is straightforward to
compute. T is calculated on the training data.

3.3. Semantic Discriminant Mapping

Now we define the Semantic Discriminant Mapping (SDM),
denoted as s. It is the full linear transformation from the
original feature space F onto the semantic space S. It is the
composition of the following transformations: PCA trans-
formation, the discriminant transformation and the normal-
isation. Its expression is the following:

s:F—S
x — Tn(Mp - Mp - z)

where the original feature space F is of dimension p and the
output semantic space S is of dimension C'.

(6)

4. C-CLASS CLASSIFIER IN SEMANTIC SPACE

The multiclass classifier is built as a combination of scalar
predictors in the semantic space S. For each dimension d in
S, training data are optimally separated in the linear sense
depending on whether they belong or not to class C4. We de-
note as s4(z), the d** component of the transform of  in S.
Given formula (5), if s4(x) is big then x is very likely to be-
long to C4. An image will be predicted in Cg if its feature x
satisfies s4(x) > tq where t4 is a threshold. We want to find
the optimal thresholds {¢,;} which minimise the classifica-
tion error €,4(t). We define €4(t) as the sum of probabilities
of detection of false negatives and false positives:

€a(t) =P(sq(x) >t |z ¢ Cq)+
P(sq(z) <t |z €Cy)
To determine €4(¢), training data are sorted with respect to
their sq(x) values. For each z, the two probability terms
in 7 are computed and the optimal threshold ¢ is set at the
value of s4(x) which minimises €;4(s4(x)).
The multiclass classifier f is defined by considering the
predictor with the highest classification score measured by
the quantity sq(x) — t4. For each z in F, f is defined by:

)

f(z) = argmax [sq(z) — t4] (3)
d=1,...,.C

5. RESULTS

In this section we detail the procedure to build our database
for training and testing. We will then show the classification
results and present a browsing application.

5.1. Groundtruth database construction

Our 1040 aerial image database was constructed from seven
large aerial images from Window on the UK?. We extracted
14575 64 x 64 pixel subimages which were manually as-
signed to one of the following eight classes: building, road,
river, field, grass, tree, boat, vehicle (see figure 1). In order
to have classes of the same size, we kept 130 images per
class yielding 1040 images total. This image set was then
split into a training set and a test set, consisting of 65 im-
ages per class. So both training and test database contain
520 images. We have made this database available online?.

Fig. 1. Each column illustrates samples from a class. From left to
right: building, road, river, field, grass, tree, boat, vehicle.

In the presented results, the SDM was determined on the
training images. Classification and browsing experiments
are conducted on the fest database after transformation with
the SDM.

5.2. Classification

The 520 images from the test database were classified in the
semantic space as described in section 4 (with p’ = 154).
The classification performance is illustrated in table 1 with a
confusion matrix on the eight classes. Since each class con-
tains 65 images, a diagonal value of 65 in the matrix indi-
cates a perfect classification for this class. From this matrix
the average classification accuracy across all eight classes is
89.4% for our method. In the confusion matrix, we see that
the confusion errors made by our classifier are consistent
with our perception. Indeed, the highest errors (7 and 8)
occur in the discrimination between perceptually ambigu-
ous classes: grass versus field and vehicle versus building.
Indeed field images are very similar to grass images except
they have a slightly perceptible directional texture. On the
other hand buildings and vehicles both relate to rectangu-
lar objects with heterogeneous colors when using low-level
features. Another encouraging observation is that manmade
classes (building, road, vehicle, boat) are rarely confused
with natural classes (grass, river, tree, field) which is a de-
sired property in remote sensing analysis.

Zhttp://www.bnsc.org
3http://www.eng.cam.ac.uk/” jf330/GTDB/



classlabels | bu. r g t. f. v. Dbo.
building 52 4 0 O 1 0o 4 4
road 3 57 0 0 1 0o 4 0
grass 0 0 55 2 1 7 0 0
river 0 0 1 64 0 0 O 0
tree 2 0 0 0 63 0 O 0
field 0 0 4 0 0 61 0 0
vehicle 8 3 0 0 1 0 52 1
boat 1 1 0 1 0 0 1 6l

Table 1. Confusion matrix for Semantic Discriminant Map-
ping classifier. A value of 65 on the diagonal corresponds
to 100% correct classification.

To compare our classification method to a state of the
art method we trained and tested a multiclass linear Sup-
port Vector Machine (SVM) on the same image sets using
libsvm toolbox*. For the linear SVM the average accuracy
across classes was 89.2%. In the same conditions, we also
trained and tested a non-linear SVM using a gaussian ker-
nel. The optimal hyperparameters of this classifier were
found by grid-search. The average accuracy was 92.3%
across classes. Note that our classifier works in the semantic
space while both SVMs were tested in the original feature
space. Our classifier has an equivalent performance to the
linear SVM (89.4% versus 89.2%) but is outperformed by
the gaussian SVM (92.3%). The performance gain obtained
by the use of a non-linear kernel for an SVM motivates the
future integration of a non-linear kernel in our approach.

5.3. Browsing

Unlike low-level feature dimensions, the individual dimen-
sions of the semantic space S are meaningful to the user and
are suitable for database browsing and visualisation. De-
pending on the user-selected axes of visualisation, images
with the same semantics are grouped in the same region of
the browsing space. The applications of this browsing tool
could be to provide the overview of a database or to show
the user the top-ranked results of an image search engine.
Visualisation can be performed in any 1-, 2- or 3- di-
mensional subspace of the C'-dimensional semantic space.
We found the 2-dimensional representation to be the most
effective. In figure 2, we show the entire content of the 520
image test database along two of the eight axes: the road
axis (horizontal) and the tree axis (vertical). The axes are
centered at the threshold values (o4, ttree). Images cor-
responding to trees are on the upper part of the plane and
images of roads on the right part. Images which neither cor-
respond to tree or road lie in the lower left part. Note that
the high classification performance in the semantic space re-
ported in the previous section guarantees the consistency of

4libsvm toolbox: http://www.csie.ntu.edu.tw/~ cjlin/libsvm/

the visualisation. Screenshots of projections along all axes
are available online °.

| tree

(troad’ttree) _ road

Fig. 2. The 520 test images are displayed in the road x tree sub-
space of the semantic space (see text).

6. CONCLUSION AND PERSPECTIVES

We presented the Semantic Discriminant Mapping which
maps a feature space into a low dimensional subspace (the
semantic space). In this new feature space a very simple
multiclass classifier was proposed with equivalent perfor-
mance to an SVM. Since each image coordinate corresponds
to a class membership likelihood, a large set of images can
be visualised in this space in a meaningful way for the user.

Futhermore if we view this semantic space as a new low
dimensional feature space in which data are optimally sep-
arated, it should be suitable for other image analysis prob-
lems such as image retrieval. We are investigating the inte-
gration of a non-linear kernel in our SDM.
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