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Abstract

The two major problems raised by a region-based image retrieval system are the
automatic detection and visual description of regions. We adopt a coarse detec-
tion and fine description approach. In this paper we first present a new method of
unsupervised coarse detection which provides intuitive and visually characteristic
regions of interest. This segmentation scheme is based on the classification of Local
Distributions of Quantized Colors (LDQC). The Competitive Agglomeration classi-
fication algorithm is used which has the advantage to automatically determine the
number of classes.

Then, considering that description must be finer for regions than for images, we
propose a new region descriptor of fine color variability: the Adaptive Distribution of
Color Shades (ADCS). Combined with an appropriate similarity measure, the high
color resolution of ADCS improves the perceptual similarity of retrieved regions
compared to existing color descriptors.
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1 Introduction

The initial content-based image retrieval paradigm, the query by image ex-
ample, was first proposed in [1] and further developed in systems such as
PhotoBook [2], QBic [3], Virage [4], ImageRover [5], PicToSeek [6], Ikona [7].
This paradigm allows to retrieve images in the database whose global visual
appearance is similar to a given example image selected by the user. While
this paradigm was useful to show the visual information retrieval viability, it
is not sufficient to meet the user’s need. Indeed the underlying assumption
of this paradigm is that the entire visual content of an image is relevant for
a search. Thus the user is not able to focus on a specific image part and to
ignore the background. As a consequence global query by example image only
allows an approximate search especially in a database of composite images.

We want to allow the user to specify an image part of interest and retrieve
visually similar parts in other images of the database regardless the back-
ground. This query paradigm takes into account user’s search preference more
precisely. We must define what “parts of images” should be and how to detect
them. Automatic “object” detection in images is a very hard task by sole use
of visual features especially since instances of a same object can greatly differ
in terms of visual appearance. Various approaches were proposed to provide a
partial image representation in the context of content-based image retrieval :

• feature backprojection: similar parts in candidate images are identified on-
line: flexible but time consuming at query time (e.g. proposed in [1] and
used in VisualSeek [8]).
• points of interest: they characterize high frequency sites in images and allow

a precise search on parts with salient details but at high computational
expense at query time (e.g. [9]).
• systematic image subdivision into blocks: simple but inaccurate (see [10][11]).
• manual subdivision: the closest to the user’s expectation but not viable for

large databases (see [12]).
• unsupervised region-segmentation: regions are automatically detected (see

[13][14]).

Among partial representations, we adopt the region segmentation approach
which is a good trade-off since it is unsupervised, provides a natural approx-
imation of objects and allows fast retrieval. To meet the requirements of a
region query system, we will propose a fast segmentation technique to detect
coarse and relevant regions for the user.
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2 Related work

Designing a region-based query system remains a challenging and open prob-
lem : automatic detection of regions of interest is a hard task and region
description must take into account the visual specificity of regions. Exist-
ing region-based query systems differ on those two points. Among these few
systems we can cite Blobworld [13] and Netra [14]. In Blobworld, region seg-
mentation is performed by classification of joint color and texture vectors with
the Expectation/Maximization (EM) technique. Segmentation is approximate
and many small areas are omitted. In Netra [14], segmentation is contour-
based and provides satisfactory regions but is very time consuming. A more
recent technique involving region-matching for image retrieval is proposed in
the SIMPLIcity system [15]. The similarity between two images is measured
as a combination of similarities between the regions which compose both im-
ages. But the system actually performs global image retrieval since all visual
features in images are involved. The quality of region segmentation is not their
main concern.

Concerning region visual description, most existing region query systems de-
rive traditional global color descriptors. They consist of color distributions
computed over a predefined subsampling of color space which yields about
200 colors. Choosing only 200 colors (the same for all images) among the mil-
lions of a full color space dramatically reduces the color resolution hence the
retrieval precision as we will see in the experiments. However, compared to
images, regions are more numerous and more homogeneous so a region-based
retrieval scheme requires a higher power of visual discrimination.

Our approach differs by how we detect and describe regions. Regions should
integrate more intrinsic variability to be visually more characteristic. We re-
quire that regions correspond to regions of interest for the user (potential
query regions) and that they are visually characteristic for efficient retrieval.
The image segmentation scheme proposed detects coarse regions. It is based
on the classification of local color distributions evaluated over large neigh-
borhoods with a low classification granularity. Concerning description, rather
than describing regions with a predefined set of 200 colors, we propose to
define an adaptive set of colors determined at a high resolution which are rel-
evant for each region. The ADCS region descriptor will be the distribution of
these colors in the region.
The key idea of coarse region detection and fine description is the following:
the relatively high visual variability inside regions is accurately described by a
high color resolution, such that regions are really specific against each other in
the database. Coherence is preserved between region detection and description
phases since they are formed by similar local color distributions, and retrieved
using distributions of color shades. Part of this work was published in [16].
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In the next section, we will explain the Competitive Agglomeration (CA) clas-
sification algorithm, an essential background technique in our work since used
both at segmentation and description phases. Region extraction by classifi-
cation of local color distributions will be developed in section 4. The color
variability descriptor ADCS will be detailed in section 5 along with the re-
trieval scheme. We also present the user interface for region-based query in
Ikona platform. Then experiments and results will be presented and dis-
cussed in sections 7 and 8. Retrieval performance of the ADCS descriptor will
be tested against the traditional color histogram and against its combination
with some simple geometrical descriptors. We conclude in section 9.

3 Visual feature grouping

For both region detection and description our approach requires an efficient
scheme to group visual features of different nature in an unsupervised way.
We use the Competitive Agglomeration classification algorithm, called CA,
presented in [17]. CA has the major advantage to determine automatically
the number of classes unlike other classification algorithms used in related
work, such as Expectation/Maximization or K-Means. Using notations from
[17], {xj,∀j ∈ {1, ..., N}} denotes the set of N data we want to cluster and
C the number of clusters. {βi,∀i ∈ {1, ..., C}} denotes the prototypes to be
determined. The distance between data xj and prototype βi is d(xj, βi). The
CA-classification is performed by minimizing following objective function J :

J = J1 + αJ2, (1)

where :

J1 =
∑C
i=1

∑N
j=1 u

2
ijd

2(xj, βi) and J2 = −∑C
i=1 [

∑N
j=1 uij]

2

Subject to membership constraint:

C∑

i=1

uij = 1,∀j ∈ {1, ..., N} (2)

where uij represents the fuzzy membership degree of feature xj to class of
prototype βi. Minimizing J1 alone is equivalent to perform a Fuzzy C Means
classification [18] which determines C optimal prototypes and the fuzzy par-
tition U given xj and C using distance d. A key point in CA algorithm is the
introduction in objective function J of the term J2 which can be considered as
a clustering validity criterion (see [19]), which is minimum when the number
of classes is minimum. Therefore J is written as a combination of two opposite
effect terms J1 and J2. α is the competition weight between terms J1 and J2

4



in equation (1). At iteration k, weight α is expressed as :

α(k) = η0 exp(
−k
τ

)

∑C
i=1

∑N
j=1 u

2
ijd

2(xj, βi)
∑C
i=1 [

∑N
j=1 uij]

2
(3)

As iterations go, α decreases so emphasis is first given to agglomeration pro-
cess, then to classification optimization. α is fully determined by parameters
η0 and τ .
The algorithm is initialized with an overestimation of the number of clusters.
During iterative minimization of J spurious clusters are discarded. As a con-
sequence, the minimization of J estimates the partition and the prototypes
and simultaneously determines automatically the number of classes. Spurious
clusters are those whose population, defined by quantity

∑N
j=1 uij for a cluster

i, falls below a given threshold ε. Convergence is decided when prototypes are
stable. The classification granularity is controlled by factors ε and α, through
its magnitude η0 and its decline strength with τ . The higher η0 and τ , the
higher α, so the more classes are merged. The higher ε and the more classes
are discarded. For a given classification granularity, CA determines the opti-
mal number of classes.

The choice of the distance measure controls the shape of detected clusters.
While euclidean distance allows to detect hyperspherical clusters, the Maha-
lanobis distance [20] detects hyperellipsoidal clusters which are more generic.
This distance takes into account cluster variance and is defined as follows :

d2(xj, βi) =| Σi |1/n (xj − ci)TΣ−1
i (xj − ci)

where ci is the centroid of class of prototype βi and Σi its fuzzy covariance
matrix. Covariance matrix is updated as follows :

Σi =

∑N
j=1 u

2
ij(xj − ci)(xj − ci)T∑N

j=1 u
2
ij

CA will be used at three steps in our work with different levels of granularity:

• image color quantization (classification of color triples)
• LDQC grouping (classification of color distributions)
• region description with ADCS (classification of color triples)

For more details on competitive agglomeration the reader is referred to the
original paper [17] and to [21] for details on its practical application.
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4 Region detection by coarse segmentation

Composite natural images, such as photostock images, can encompass a broad
variety of visual details. In the context of region-based image retrieval, we fo-
cus on salient image regions. We propose a coarse segmentation method to
detect regions which are homogeneous in terms of photometry but encom-
pass a certain visual variability. Fine visual details are naturally integrated
within regions through the coarse detection. Region photometric variability
is decided to make regions more visually characteristic from one another in
the database. In addition we require our detection scheme to be unsupervised,
fast and naturally provide intuitive regions for the user.
Our segmentation approach relies on the CA classification of LDQC features
(Local Distribution of Quantized Colors). This single feature carries in itself
rich photometric information of local color variability. It allows to detect uni-
form areas as well as textured ones, without having to combine features of
different nature such as mean color and texture. Besides it is coherent with the
ADCS region descriptor presented later. The coarseness of region detection is
obtained by the relatively large pixel neighborhoods to determine LDQC’s and
the coarse CA classification granularity. Grouping similar LDQC’s to generate
regions leads to coarse coherent regions more naturally and requires little spa-
tial postprocessing. In this section we will detail the segmentation algorithm
in the order of its different steps :

• LDQC feature extraction
• LDQC feature grouping
• spatial consolidation

This segmentation scheme was tested on a database of 11.479 images photo-
stock images. Results will be presented on these images.

4.1 LDQC feature extraction

The color set used to determine the local color distributions of an image should
not be the entire color space but a compact and representative set of the im-
age. A natural image can have as many as 60.000 different colors. For each
image, we define this adaptive set by color quantization to dramatically re-
duce the number of colors without losing too much perceptual information.
Then for each pixel neighborhood, local distribution is determined on the set
of quantized colors providing a LDQC feature (Local Distribution of Quan-
tized Colors). Then grouping of LDQC’s obtained from the entire image will
generate coarse regions.

The image color quantization step aims at reducing the number of color bins
in the LDQC without losing too much perceptual information. They should
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allow to separate various salient regions in an image. Various quantization
schemes were proposed which differ in computational load and in precision
(see [22]). They rely on a more or less adaptive partition (hence more or less
expensive and precise) of the color space into cells. Many approaches assume
the number of quantized colors is given, which we do not want. We rather
want this number to depend on the image photometric complexity.

The General Lloyd Algorithm [23] (also referred to as Linde-Buzo-Gray and
which is equivalent to the well-known K-Means classification method [24]) is
a widely used color quantization scheme in the literature. It consists in esti-
mating iteratively the optimal partition of color pixels into a fixed number of
classes with the quadratic error criterion. Compared to GLA, CA algorithm
(see section 3) presents the major advantage to automatically determine the
number of classes. Further advantages of CA are investigated in [21]. Quan-
tized colors are obtained as the class prototypes resulting from the CA classi-
fication of image color pixels.

Concerning color space, since classification tightly relies on the metric, a per-
ceptually uniform color space is necessary, the most common being Luv and
Lab [22] [25]. Theses spaces were designed such that color differences judged
equal by a human are also equal in euclidean distance in these spaces. On con-
trary rgb and Hsv color spaces are not perceptually uniform [26]. Hsv space
is intuitive but suffers from discontinuities (hue component is cyclic and hue
and value components are meaningless for low saturation). rgb space has the
advantage to avoid the transformation computation, but its topology is not
representative of color similarity perceived by a human observer. The choice
of color quantization by pixel classification in the Luv space [25] with the eu-
clidean distance emerges as a natural choice. Luv was preferred to Lab due to
a lower transformation cost from native rgb space. While euclidean distance
will only detect hyperspherical colors clusters, we rather use the Mahalanobis
distance (see section 3) to detect hyperellipsoidal clusters which provide a
good model for color gradations and shades.

Initial prototypes for CA are defined from a subset of original colors. They are
those which lie at the intersection of a 7 × 7 grid, i.e. on 36 regularly spaced
sites in the image to facilitate CA convergence. So the initial color partition
contains 36 quantized colors. The CA classification granularity (see section 3)
was empirically chosen such that large areas with a strong texture are repre-
sented by more than one quantized color. At classification convergence, class
prototypes define the set of n quantized colors. As CA determines automat-
ically the number of classes, the number of quantized colors represents the
image color variability.

After color quantization the image photometric complexity is reduced. Note
that this level does not allow to detect regions directly, because coarse re-
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Fig. 1. Original image has 43.217 unique colors (left) and quantized image has 27
quantized colors (right)

Fig. 2. Illustration of LDQC’s over three different neighborhood windows.

gion homogeneity should be defined in terms of color variability rather than
pointwise color information. In order to capture local visual characteristics,
be they uniform or textured, LDQC feature are locally extracted in the quan-
tized image. We slide a window over the quantized image and in each pixel
neighborhood we determine the corresponding local color distribution of quan-
tized colors (LDQC’s). So in each neighborhood a LDQC feature is extracted.
Figure 4.1 illustrates 3 examples of LDQC in three image sites with differ-
ent color variability. In uniform neighborhoods LDQC distributions have a
dominant peak (or “mode”) while in textured ones they tend to be flatter.
For a 500x400 image, window width is 31 pixels and evaluation step is half a
window size (i.e. 16 pixels). The number of extracted LDQCs for a window is
determined as follows : (500/16)× (400/16)=31× 25=775.

4.2 LDQC feature grouping

To group extracted LDQCs using CA classification algorithm, a suitable dis-
tance is required which influences segmentation quality. Traditional distances
to compare color distributions, such as Minkowski Lp distances, rely on a
simple bin-wise comparison without taking into account the color informa-
tion associated to each bin. They implicitly assume that bins are independent
from one another which is untrue since a color similarity can be determined
between colors associated to two bins. Such distances have been applied to
color distributions for global image search. Although they provide satisfactory
results for this problem, they turn out to be too imprecise for our purpose.
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An example of their limitation is that they consider at a maximum distance
two distributions which do not intersect. This does not correspond to human
perception. Consider, for example, the case of two pixels neighborhoods which
have different but similar colors such as shades of blue in a sky. They will be
at maximum Lp distance although perceptually similar.

The color quadratic distance [27] proposed in the context of the QBic system
provides a nice solution to this problem by integrating the color bin distance
within the color distribution distance. We define X and Y two color distribu-
tions over the n quantized colors and write them as pairs of color/population :
X = {(c1, p

X
1 ), ..., (cn, p

X
n )} and Y = {(c1, p

Y
1 ), ..., (cn, p

Y
n )}.

The quadratic distance between X and Y is :

dq(X,Y )2 =(X − Y )TA(X − Y )

=
n∑

i=1

n∑

j=1

(pXi − pYi )(pXj − pYj )aij
(4)

where A = [aij] is the matrix of color similarities aij between colors ci and cj :
aij = 1− dij/dmax where dij is the euclidean distance in the Luv color space
and dmax the maximum of this distance in the color space. Note that if A
denotes the identity matrix, the distance is the euclidean distance itself, i.e.
dq(X,Y )=||X − Y ||L2 .

Figures 4 and 5 show the improvement of quadratic distance compared to L1

distance using 3 images of “sky”, “brick” and “wicker”. Due to their photo-
metric homogeneity they can be considered as pixel neighborhoods or regions.
Each image was transformed according to 6 different intensity factors. So we
obtain three image families (18 images total, see figure 3) which differ in
photometric homogeneity and intensity. Color distributions of the 3 brightest
images (corresponding to intensity factor 2) and that of the 3 darkest (factor
0.5) have been compared to the 17 other images with L1 distance (fig. 4) and
quadratic distance (fig. 5).
We observe a saturation effect of L1 distance : most of retrieved images (fig.
4) are gathered near the maximum distance, around grade 200. As a conse-
quence L1 performs poorly for discriminating homogeneous images. On the
other hand, in figure 5, we observe quadratic distance ability to measure the
perceptual continuum between various intensities of a given image and, at
the same time, to separate classes (“sky”, “brick” and “wicker”), although
distributions from homogeneous regions may have empty intersections. It is
important to also note that the quadratic distance property of continuity with
respect to intensity shift can also be shown for color shift. This better power
discrimination of visual of quadratic distance compared to L1 is necessary for
LDQC grouping and will also be useful in combination with ADCS descriptor
which we will present later.
Concerning classification, CA algorithm is used (see section 3) to group ex-
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x 0.5 x 0.75 x 1.0 x 1.25 x 1.5 x 2.0

Fig. 3. 3 images extracted from actual regions are transformed according to 6 in-
tensity factors. The 18 test images differ in intensity, color and texture.

100 2160 200

Fig. 4. Six similarity tests with L1. On each line, images are positioned according
to the L1 distance in color distribution with the first image. Graduation depicts
distance values. Very similar images are correctly ranked first, but all other images
are clustered around maximum distance (around value 200) and cannot be distin-
guished. On average 13 images out of 18 are at a distance value in the collection
{197, 198, 199, 200, 201}. This illustrates the lack of precision of L1 distance for ho-
mogeneous data. More generally, bin-wise distances behave poorly (see text) when
comparing distributions which have little or empty intersection (case of homoge-
neous data).

100 2160 200

Fig. 5. Six similarity tests with dquad. Same illustration as in figure 4 but with
quadratic distance. Distance values are more spread out than with L1 and provide
remarkably better results. Our perception of visual continuum between images is
more accurately measured with quadratic distance and it provides a better power
of visual discrimination between classes of images.
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tracted LDQCs from image using the quadratic distance. Initial prototypes
for CA are defined from a subset of LDQCs. They are those which lie at the
intersection of 6 × 6 grid, i.e. on 25 regularly spaced sites in the image. At
classification convergence, the final partition provides LDQC classes and their
prototypes. Segmented image is obtained by associating to each pixel the tag
of the class to which its neighborhood belongs. A vote filter is then used to
discard isolated tags in the image.

4.3 Spatial consolidation

By associating LDQC class tags to pixel neighborhoods, we obtain a complete
image partition into adjacent regions. Some regions may still be too small
to form regions of interest; so they needlessly increase the total number of
regions in the database. Besides in complex scenes these small regions are
often located at the frontier between two salient regions or within a salient
region. They should be merged to improve regions of interest topology.

We require that each region covers at least 1.5% of total image area. Below
this threshold a region is merged to its neighbor region which is the most vi-
sually similar, if it is similar enough. Two regions are said “visually similar” if
their mean LDQC are close in quadratic distance. Iterative scheme for small
region merging is the following : consider the smallest region of area below
1.5% which has a visually similar neighbor region, if such a small region ex-
ists, and merge it into the neighbor region. When there is no more such small
regions, remaining regions below 1.5% which have no visually similar neighbor
regions are considered as noise. They are discarded and not indexed.
This region merging scheme is achieved using a Region Adjacency Graph [28],
or RAG. Region attributes are stored in graph nodes (area, color distribution,
contours, position) and adjacency information in graph edges (adjacency, com-
mon contour length) as illustrated in figure 4.3.

5 Region indexing and retrieval

After segmenting images in the database, we must provide an efficient scheme
to characterize region visual appearance and to compare them in a perceptu-
ally efficient manner for the user.

In this section we will propose the ADCS region descriptor which, in com-
bination with the segmentation scheme, is part of our region-based retrieval
approach of coarse region detection and fine description. A similarity measure
will be introduced which allows to compare any kind of color distribution,
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Fig. 6. RAG structure of partitioned image. RAG stores region Ri attributes in
nodes and adjacency information between all region pairs (i, j) graph edges. These
information is exploited for region merge and removal in the segmentation scheme.

Fig. 7. Final segmented image : regions are represented with their mean color.

including ADCS. Then retrieval results will be presented and discussed on a
generic photostock image database.

5.1 ADCS, a fine and compact descriptor of region color variability

Most of existing region-based retrieval systems describe regions using the tra-
ditional global color histogram for regions which was initially proposed for
query by image example. It consists in color distribution determined on a fixed
color space quantization in about 200 colors : 166 colors in VisualSeek [8] and
218 in Blobworld [13] (actually reduced to 5 by singular value decomposition).
In Netra [29] an average of 3.5 dominant colors per region is selected from a
colormap of 256 colors fixed for a given database. The common point between
existing color descriptors for both regions and images is the use of a fixed,
hence coarse, color set to represent the entire color space (be it rgb, Lab,
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Luv or Hsv). Choosing the same 200 colors among millions provides a coarse
representation of colors. While this may be sufficient to compare global image
appearance, it is not suitable for region-based retrieval. Figure 8 illustrates
an example of the limitations of traditional color histogram to characterize a
region.

Compared to images, regions are more homogeneous and more numerous. This
statement implies that region-based retrieval requires to discriminate in the
database more color distributions which are more “peaked”. As a consequence,
in addition to being compact, a region descriptor must provide a fine repre-
sentation of colors.

To meet these requirements we propose to describe regions with the distri-
bution determined on an adaptive and fine set of colors which are relevant
for each region which we call Colors Shades. Resulting descriptor is ADCS
for Adaptive Distribution of Color Shades. Color shades are obtained by a fine
color quantization performed on each region using CA algorithm. We have pre-
sented this quantization scheme in section 4.1 and mentioned its advantages
over LBG/GLA algorithm. Compared to fixed color space subdivision as in
traditional color histograms, it naturally provides more accurate quantized
colors. In each region, pixels are classified using CA with a fine granularity
(see section 3) and Mahalanobis distance in Luv color space. Quantization
is adaptive to each region so it provides colors which are more representa-
tive than if an image color quantization were performed 1 . An ADCS index is
composed of the list of color shade triples and their corresponding normalized
population in the region.
We use the term color shades rather than dominant colors (as in [29] and
[30]) to express the presence of minor colors in ADCS descriptor. The higher
the region photometric complexity and the more color shades in the ADCS
descriptor. The nature and the number of color shades are specific to each
region unlike with existing color descriptors. They are picked from the entire
Luv space which contains 5.6 million colors while other descriptors can not
distinguish more than about 200 colors. As a conclusion, ADCS provides a
fine, compact and adaptive representation of region color variability. Figure 8
illustrates how the gain in color precision with ADCS compared to traditional
histogram results in a better visual discrimination.

1 Indeed, with an image color quantization, participation of region pixels is porpor-
tional to region area which implies that resulting quantized colors would be more
accurate for larger regions. To avoid this undesirable effect, we rather adopt a region
color quantization to describe regions.
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Fig. 8. Limitation of traditional color histogram : two perceptually different regions
may have almost same histograms (middle images). Its coarse color resolution brings
colors which are perceptually different in the same bins, while ADCS color shades
provide a more accurate description (top).
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Fig. 9. Original image, its detected regions and their respective ADCS distributions.
Color bin order does not matter. We remark that textured regions corresponding
to the hat and the coat are represented by different shades of red and the uniform
yellow background by a dominant yellow peak and a few other minor colors. The
set of color shades obtained is perceptually relevant for each region.

5.2 Generalized form of color quadratic distance

We now address the problem of similarity measure between two ADCS dis-
tributions to retrieve regions. Since ADCS relies on a region-dependent color
quantization, two ADCS index have different color sets and usual bin-wise
histogram distances are not applicable. Color quadratic distance is again a
relevant choice for three reasons. The first reason is practical : we will see that
it can be applied to distributions with different quantizations. The second is
its power of visual discrimination shown in section 4.2 relatively to intensity
and color shifts. The third one is it provides a consistent similarity measure
even between two distributions with empty intersection unlike usual bin-wise
distances (such as Lp). Indeed since ADCS color resolution is fine, two ADCS
distributions are very likely to have an empty intersection, i.e. no color shades
in common.

To our knowledge only two distances were proposed to compare distributions
expressed on different quantizations : Earth Mover Distance [31] and Weighted
Correlation [32]. Both papers deal with global image retrieval and quantization
is performed at image level. The first distance requires solving iteratively a
linear optimization problem; so it is complex and computationally expensive.
The second is faster (in O(NN ′) where N and N ′ are the number of colors in
each distribution) but is defined specifically for their quantization algorithm,
which is a variation of K-Means.

To compare two ADCS distributions we propose to express the quadratic
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distance in its generalized form. We will show that quadratic distance allows
to compare color distributions based on different quantizations, unlike what
other papers claimed [31][33][32][34]. In section 4.2, quadratic distance was
used in its original form to compare LDQC distributions which have same
quantizations. We propose to rewrite its expression from formula (4) in order
to remove terms which involve bin difference. For a given query region of ADCS
X similar regions in the database are such that their ADCS Y minimizes
dquad(X,Y ). Let us write X and Y as pairs of color/population :
(cX1 , x1), ..., (cXnX , xnX ) and (cY1 , y1), ..., (cYnY , ynY ). We define X ′ and Y ′ as the
extensions of distributions X and Y over the entire color space (Luv here) as
follows : X ′ has the same values {x1, ..., xnX} as X on the set {cX1 , ..., cXnX},
and 0 on the rest of the space. Y ′ is defined likewise from Y . So we have
dquad(X

′, Y ′) = dquad(X,Y ). Since X ′ and Y ′ are defined over the same color
space (the entire space), dquad(X

′, Y ′) can be expressed. We note A the matrix
of similarity between all colors in the entire space. We get :

dquad(X,Y )2 =dquad(X
′, Y ′)2

=(X ′ − Y ′)TA(X ′ − Y ′)
=X ′TA(X ′ − Y ′)− Y ′TA(X ′ − Y ′)
=X ′TAX ′ −X ′TAY ′ − Y ′TAX ′ + Y ′TAY ′

Symmetry of matrix A implies :

dquad(X
′, Y ′)2 = X ′TAX ′ + Y ′TAY ′ − 2X ′TAY ′

By construction of X ′ and Y ′, we have :

X ′TAX ′ = XTAXX , Y ′TAY ′ = Y TAY Y , X ′TAY ′ = XTAXY Y

where matrices AX , AY and AXY are the restrictions of matrix A which ex-
press color similarities between, respectively, X’s color shades with themselves
(matrix of dimension nX .nX), those of Y with themselves (dimension nY .nY )
and those of X with those of Y (dimension nX .nY ). We obtain the following
formula for dquad(X,Y )2 in which no more bin-wise difference appears :

dquad(X,Y )2 =XTAXX + Y TAY Y − 2XTAXY Y

and in scalar form we have :

dquad(X,Y )2 =
nX∑

i,j=1

xixjacXi cXj +
nY∑

i,j=1

yiyjacYi cYj − 2
nX∑

i=1

nY∑

j=1

xiyjacXi cYj (5)

Expression (5) is the generalized form of color quadratic distance between dis-
tributions X and Y determined on any color sets {cX1 , ..., cXnX} and {cY1 , ..., cYnY }
with respective color populations {x1, ..., xnX} and {y1, ..., ynY }. This expres-
sion is used to compare query ADCS with candidate ADCS in the database. It
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can be used more generally with any kind of color distributions with different
color quantizations. This computation is actually optimized at query time by
pre-computing the first two terms in (5) for each region at indexing time such
that only the last cross term needs to be evaluated.
Note that in Netra [14] and in MPEG7 [30], the distance used to compare
dominant colors distributions is an approximation of the generalized form of
color quadratic distance in which colors in each distributions are at maximum
distance in color space. We do not make such an assumption since color shades
of an ADCS index can have various degrees of similarity.

5.3 Visual similarity search

In the visual search of similar regions ADCS descriptor captures photometric
information. However, depending on the type of searched regions, additional
geometrical descriptors are necessary to improve the retrieval precision. In
addition to ADCS, following features are computed for each region : area,
position and compactness. Region area feature is normalized with respect to
image area. Position is the region centroid whose coordinates are normalized
with respect to image width and height. Compactness is the ratio of the sum
of region contour lengths divided by region area; it is maximum for a disc and
low for a thin, elongated or irregular shaped region. Integration of sophisti-
cated region shape descriptors was judged irrelevant since regions obtained by
segmentation on natural image database are not precise enough. Compactness
feature provides sufficient shape information for our problem.

Overall region visual similarity relies on the combination of the 4 following
descriptors : ADCS, area, position and compactness using quadratic distance
(generalized form), L1, L2, and L1, respectively. The overall similarity measure
between a query region RQ and a candidate region RC is a linear combination
of those four distances :

dfinal(RQ, RC) = αADCS.d
ADCS
quad (RQ, RC) +

αA.d
A
L1

(RQ, RC) +

αP .d
P
L2

(RQ, RC) +

αC .d
C
L1

(RQ, RC)

(6)

αADCS, αA, αP and αC are the relative weights of importance of features
ADCS, area, position and compactness, respectively. They are set in the query
interface, as we will see later, depending on the user requirements.

Since geometric feature distances are much faster to compute than quadratic
distance on ADCS descriptor, query time can be reduced by rejecting unlikely
candidate regions : for a given query region RQ and a candidate RC , if a value
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among dADCSquad , dAL1
, dPL2

, dCL1
is too high, candidate RC is rejected and more

complex quantity dADCSquad is not computed. If geometric weights are set to zero,
this rejection strategy is not applied since distance is reduced to dADCSquad . Re-
jection strategy works as follows :

initialization: dfinal = 0

if ( αA > 0 and dAL1 > AREA_THRESHOLD )

so dfinal = PSEUDO_INFINITE_VALUE

else

dfinal + = dAL1

if ( αC > 0 and dCL1 > COMPACTNESS_THRESHOLD)

then dfinal = PSEUDO_INFINITE_VALUE

else

dfinal + = dCL1

if ( αP > 0 and dPL2 > POSITION_THRESHOLD)

then dfinal = PSEUDO_INFINITE_VALUE

else

dfinal + = dPL2

dfinal + = dADCSquad

PSEUDO_INFINITE_VALUE is an arbitrary large distance value. AREA_THRESHOLD
, COMPACTNESS_THRESHOLD , POSITION_THRESHOLD are defined as half of the max-
imum distances. We will see in section 8 that this rejection strategy speeds up
the search process.

6 User Interface

Our region-based image retrieval system is integrated in Ikona software plat-
form [7], built upon a client/server architecture (server written in C++ and
client user interface in Java).

Ikona interface allows browsing database thumbnails (see screenshot 6). The
user can click any detected region in each thumbnail to specify the query
region. A second window allows to adjust relative importance of features
(weights αADCS, αA, αP and αC) depending on the relevance of geometri-
cal feature for the type of searched regions.
The server retrieves images which have a region which minimizes the visual
distance dfinal to the selected query region. Retrieved regions are identified by
white contours in the interface.
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Fig. 10. Ikona region query user interface. A random view of the database (top) and
settings window (bottom) to adjust relative importance of color diversity (ADCS),
area, position and compactness. Each region in any thumbnail is clickable in the
main window.

7 Experiments

Our system was tested with a standard 2GHz/512Mo PC. The test database
contains 11.479 images (mostly color and some black and white) including 792
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texture images from Vistex database 2 , 552 from Images Du Sud 3 photostock
and 10.135 from Corel photostock 4 . The last two databases contain natural
images of flowers, drawings, portraits, landscapes, architecture, people, fruit,
garden, cars, kitchen, ....

Evaluation of performance of a content-based image retrieval system is a hard
task since it depends on human perceptual judgement, on the domain of ap-
plication and database content (photostock images here). For a region-based
system, it is harder since it requires the construction of a region groundtruth
database. Our region groundtruth database is partly built from the 88 classes
of texture patterns (9 images per class) from Vistex database which can be
considered as regions obtained by our coarse detection scheme. The rest of the
groundtruth database consists of detected regions, which we have manually
labelled them to associate them to one of the three following classes : per-
son (skin region), lavender and swimming pool. The 88 Vistex classes allow
to present precision results over a large number of tests and the 3 manually
defined classes are used to investigate practical query scenarios. Within each
class, regions refer to the same semantic object and are also perceptually sim-
ilar.

8 Results

8.1 Region detection

Even in complex natural scenes extracted regions present a coherent visual
appearance and are generally intuitive for the user. The coarse segmentation
proves its ability to form regions which can encompass different shades of the
same hue, strong textures, isolated spatial details. Such perceptual variability
makes each region more specific against other regions in the database. Dis-
carded regions (shown as small grey regions in examples of figure 11) represent
a very small fraction of image areas. Hard segmentation cases correspond to
scenes with many fine details. For such images, we may consider the alterna-
tive of points of interest for partial description as in [9].
Some segmented images are presented in figure 11. More examples can be
seen at: http://www-rocq.inria.fr/~fauqueur/ADCS/ . The segmentation
process is fast (1.9 seconds on average per image) which is suitable for large
image databases. 56,374 regions were automatically extracted from the 11,479
images (average of 5.2 regions per image on Corel and Image Du Sud images).

2 http://www-white.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
3 http://www.imagedusud.fr
4 http://www.corel.com
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Fig. 11. Illustration of coarse segmentation and fine description. Each triple of im-
ages consists of the original image, the image of detected regions represented with
their mean color and the image of regions with color shades used for indexing.
Small discarded regions are shown in grey. The high perceptual similarity between
each original image and the image of color shades shows the accuracy of the ADCS
descriptor.

8.2 Region description

In figure 11, the third image of each example is created from the ADCS color
shades of each detected region. The high visual similarity between these images
and their corresponding original image shows the precision of ADCS color
variability description.

A total of 963,215 colors shades from the Luv space was automatically de-
termined to index the 56,374 regions (average of 17 color shades per region).
690,419 of these colors were unique (to be compared with the 200 fixed bins of
a traditional histogram). Extracting region ADCS index from an image took
0.8s on average. A region index takes an average of 69 bytes (a scalar is stored
as byte) which makes it three times more compact than a traditional color
histogram index.

• number of images : 11,479
• number of regions : 56,374
• total number total of color shades : 963,215
• total number total unique shades : 690,419
• number of colors per region : 17
• indexing time per image : 0.8s

Tests were achieved to compare retrieval precision on our region groundtruth
database between ADCS and the coarse color representation of traditional
descriptors. Comparison was performed with an Luv color histogram based
on a systematic subdivision of color space into 6 values per component, which
yields 216 bins and using L1 distance for retrieval.
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8.3 Retrieval

Retrieval is performed by exhaustive index comparison with query region in-
dex, i.e. all regions in database are compared to the query region. Average
retrieval time among the 56,374 regions is 0.8s with sole ADCS descriptor and
0.5s with combination of geometric descriptors (faster time is due to rejection
strategy detailed in section 5.3).

8.3.1 Qualitative evaluation

In practice, various types of queries performed with the presented approach
always return regions which have a consistent visual similarity with the query
region whether it be uniform, textured or encompassing different shades of a
given color. Retrieved regions give an impression of visual continuum along the
ranks. In comparison with the 216 color histogram, region retrieval with ADCS
is slower but always returns regions which are more satisfactory perceptually.
When taking into account position, area and compactness information (by
setting combination weights to positive values in user interface) the improve-
ment in visual relevance of retrieved regions is usually noticeable, in addition
to speeding up search time.

Depending on the type of searched regions, results may be more or less relevant
in terms of semantics because semantics and visual description do not always
have a one-to-one correspondance. For instance a small and uniformly black
query region may depict very different objects as well as shadow areas. More
generally, even if a region is correctly detected, we observed that its visual
appearance is not always specific to a single class of “objects” in an hetero-
geneous image database. Conversely some semantic “objects” can have very
different visual appearance, such as “dog”, “cloth”, “car”. To build a region
groundtruth database we favored regions which present a strong correlation
between semantics and visual appearance (such as lavender, skin, swimming
pool) for a more meaningful numerical evaluation of performance. In table
below, we give some examples of correlation between semantics and visual
appearance which we observed when performing region queries :
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position color likely

size in image hue variability “object”

large bottom white low snow

large bottom purple high lavender field

large top blue shades sky

not discriminant not discriminant cyan low swimming-pool

small to medium center light pink shades skin

Table 1. Examples of regions for which a strong correlation was observed between

their visual description and their semantics.

8.3.2 Quantitative evaluation

Quantitative evaluation of retrieval precision of our approach was tested by
considering each region from the groundtruth database as query region. Groundtruth
classes are the following :

• 88 Vistex classes (792 images with 792 labelled regions)
• “lavender” class (108 images and 134 labelled regions)
• “people” class (371 images and 634 labelled regions)
• “swimming pool” class (26 images and 29 labelled regions)

The total number of labelled regions is 1589. Each of these 1589 regions was
used as a query region. Among top ranked regions (up to rank 50), precision
at rank k is defined as the ratio of the total number of correct retrieved regions
up to rank k divided by k. Figure 12 shows the precision curves obtained from
these automatic queries using ADCS, 216 bin histogram and the combination
of ADCS with geometrical descriptors proposed above. For presentation sake,
results on Vistex 88 groundtruth classes are shown on the average over the 88
classes.

In figure 12, precision curves show that for all groundtruth classes, ADCS
improves precision compared to traditional color histogram. This improvement
is variable depending on classes. The gain in precision is coherent with the
finer color representation of ADCS combined to the quadratic distance. Figure
13 illustrates a query scenario on a lavender region using traditional color
histogram and ADCS. Figure 14 illustrates a query on a snow region with sole
ADCS and the combination of ADCS with geometric descriptors.

We observed that the information of number of color shades (which expresses
the photometric complexity) is exploited by ADCS descriptor : regions with
many color shades are matched with regions with many color shades and
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Fig. 12. Precision curves on classes “lavender”, “person”, “swimming pool” and
“Vistex” using 3 indexing schemes: traditional histogram vs. ADCS vs. ADCS com-
bined with area and position.

conversely for regions with one or few color shades. False positives among
retrieved regions are due to regions which present similar visual appearance
but different semantic content.

Combination of ADCS with the simple presented geometric features leads
to another remarkable improvement except for the swimming pool class for
which the gain is almost zero. In our groundtruth database, region labelled as
swimming pool had similar photometric content but were of different areas at
different locations within images. As stated before, combination with geomet-
ric features is not necessarily relevant for all types of target regions. However
for regions such as lavender, sky, skin or snow (see query example of figure
14), they are particularly discriminant.

8.3.3 Scalability and optimization

Although region retrieval is performed by exhaustive search on the database of
11,479 images and 56,374 regions, retrieval time is low (0.5s). We usually con-
sider that two seconds is a maximum for the user to wait for query results. To
handle larger databases, beyond 50,000 images, we plan to investigate meth-
ods to speed up the region search process. The first solution is to optimize the
quadratic distance by using the computationally cheaper bounding distance
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Fig. 13. Retrieval from top-left lavender region: using ADCS (top) and the 216 bin
traditional color histogram (bottom). Retrieved regions in images are identified by
their white contours. The traditional color histogram can not distinguish shades of
purple with shades of blue. No geometrical descriptor is used here.
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Fig. 14. Retrieval from top-left snow region: using ADCS (top) and the combina-
tion of ADCS with the area and position (bottom). Although retrieved regions with
ADCS only are relevant in terms of photometry, the size and position greatly im-
prove the quality of retrieval. They are very discriminant for snow region retrieval.
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proposed in [27]. The second solution is to prune the search by prestructuring
the database using a tree structure, hash table or region categories. Region
categories, as defined in [35] for another query paradigm, could be exploited.

9 Conclusions

We presented a novel scheme for coarse automatic image segmentation and fine
region description to perform region-based queries in a generic image database.
The key idea of this paper is to detect visually specific regions of interest and
match them with the fine descriptor to improve the retrieval results.

Segmentation is fast and detects coarse regions which are intuitive for the
user. The technique relies on the classification of LDQC’s evaluated over large
neighborhoods with the generalized form of the quadratic distance as simi-
larity measure. To describe regions, we focused on color since it is known to
be the perceptually most relevant photometric descriptor for generic images.
The proposed ADCS signature provides a representation of region color vari-
ability with more accuracy than existing region color descriptors. It improves
the region retrieval precision. We saw that combining ADCS with two sim-
ple geometrical descriptors leads to an additional significant gain in retrieval
precision.

In future work we plan to investigate methods to speed up the region retrieval
process for databases with more than 50,000 images using region categorization
and similarity measure optimization. We also consider extending ADCS fine
color description and matching scheme to color descriptors which integrate
spatial information (such as [30] or [36]). Finally our other prospect concerns
multiple region queries using the RAG representation of images.
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